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CCS Concepts
• Computing methodologies→ Reflectance modeling.
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1 The MatAugSynth Dataset
Weutilize two data augmentationmethods to create ourMatAugSynth
dataset. Several examples are displayed in Figure 1.

Pattern embedding. We enhance the heterogeneity of base mate-
rials by integrating various patterns, which are assigned metallic
material properties. These patterns are then utilized to partially
replace a base material, adding complexity and diversity to its ap-
pearance. The surface of the base material is divided into a 3 × 3
grid. Within each section of this grid, we randomly select zero to
two pattern centers and apply random scale factors to determine
where the pattern will be integrated. The material parameters in
these selected areas are replaced with those of the patterns. To
introduce further variety, we design the replacement process in two
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Figure 1: Examples from our MatAugSynth Dataset. The left
two are mixture cases created using Perlin noise, while the
right two are embedded cases produced by the pattern em-
bedding method.

ways. On one hand, we keep the normal map of the base material
intact while substituting all other material parameters with those
from the patterns. On the other hand, we calculate the unsigned dis-
tance function (UDF) of the patterns and convert these into height
maps. By randomly adjusting these height values to be positive
or negative for one entire pattern, we create effects of raised or
recessed surfaces, which are then converted into a normal map.
This approach enriches the data by varying the surface normals,
thus altering the perceived texture of the material.

Mixture. To further enhance the data’s heterogeneity, we adopt
a method similar to that in Deschaintre et al. [2020], using low-
frequency Perlin noise to generate several masks. Based on these
masks, multiple material maps are stitched together.

2 Lightweight Capturing System
To facilitate the convenient collection and reconstruction of real
materials, we have developed a multi-view AR scanning system
by integrating the Unity AR Foundation environment 1. In Figure
2, we display a frame from each of the two devices during the

1https://unity.com/solutions/xr/ar
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Figure 2: The left side shows the view aligned with the axes
indicating the camera direction, while the right side shows
the view aligned with the axes indicating the light source
direction.

Figure 3: The left is the marker image imported into the
Unity client app, and the right is the actual printed marker
(with the central area being the material that needs to be
photographed). Our client app uses this marker to locate the
reference plane.

capturing process. A complete acquisition example is available in
the supplementary video.

2.1 Client
The client is responsible for visualizing the sampling directions,
capturing images, and uploading them. Based on the Unity AR Foun-
dation framework, the core functionality involves cross-platform
calls to underlying APIs such as ARKit and ARCore. These APIs cap-
ture the plane on which the marker image resides as the reference
plane. The geometric center of this reference plane is used as the
origin of a three-dimensional coordinate space, with the reference
plane itself defining the X-Y plane, thereby uniquely determining a
3D coordinate system. This enables the acquisition of the real-time
pose of the mobile device in space, allowing it to record the current
relative position coordinates of the camera and light source to the
reference plane during scanning, and to display the next position
coordinates of the camera and light source as transmitted by the
server. Specifically, as shown in Figure 3, we employ the marker
image proposed by MaterialGAN [Guo et al. 2020], which is utilized

for both AR recognition and further calibration and warping after
the photos are captured.

Our user interface is designed to be minimalist, primarily show-
casing the real-time video background captured by the AR camera,
overlaid with several UI buttons or prompt texts. The red, blue,
and green columns represent the XYZ axes. The yellow column
indicates the direction of the next light source position (with the
initial coordinates defaulting to being perpendicular to the refer-
ence plane), and the white column shows the direction of the next
camera viewpoint. Once both the camera and light source are posi-
tioned correctly, pressing the "Take Photo" button on the camera
device uploads the current image captured by the original camera
(without the UI and coordinate axes) to the server. Then the client
waits for the next set of coordinates for the camera and light source
(or a signal to stop sampling).

2.2 Server
After the "Take Photo" button is clicked, the Unity client uploads the
image data to the server using Unity’s built-in network interface.
The server, built using Express and Node.js 2, receives the photo
from the Unity client, and then utilizes the detection method from
the open-source project apriltags 3 to recognize the marker image,
and extract valid information from the central region, obtaining
the input image for the reinforcement learning model. It pushes
the calibrated image and directions to the agent through sockets,
and waits for the next set of sampling directions (or a stop signal
if requirements are met). Once the next sampling directions are
received, the server updates the locally stored coordinates, allow-
ing the clients to obtain the latest parameters through continuous
request updates.
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